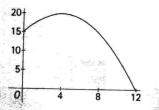
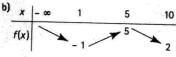
- **65.** 1° f(0) = 15 est la hauteur de la balle audessus du sol au moment du lancement.
- f(3) = 0: au bout de 3 secondes, la balle touche le sol.
- 2° a) 20 mètres ; b) À 0 s et à 2 s, la balle est à une hauteur de 15 m ; c) S = [0,36 ; 1,63].
- La hauteur de la balle est au-dessus de 18 mètres entre les instants 0,36 et 1,63 (en secondes).



- **42.** 1° a) f(x) est positif pour : $x \in]-\infty$; 0] \cup [2; 10].
- f(x) est négatif pour $x \in [0; 2]$. f(x) s'annule en 0 et en 2.



- 2° a) $S =]-\infty; -1] \cup [3;8];$
- b) S =]0; 2[;
- c) $S =]-1;0] \cup [2;3[\cup]8;10]$.

Variations . Extremum

1. Lecturer graphiques

33. a)
$$x \mid -9 \quad -6 \quad -3 \quad 0$$

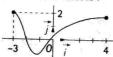
$$f(x) \mid -4 \quad | \quad -4 \quad | \quad -2$$

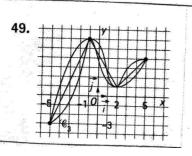
- Sur l'intervalle [-9; -6], la fonction f est croissante.
- Sur [-6; -3], la fonction f est décroissante. Sur [-3; 0], la fonction f est croissante.
- **45.** a) Vrai. En effet, sur [-3; 4], la fonction f est décroissante, donc, pour tout réel x tel que $-3 \le x \le 4$, les images sont dans l'ordre contraire : $f(-3) \ge f(x) \ge f(4)$.

Pour tout x tel que $-3 \le x$, alors :

$$f(-3) \ge f(x);$$

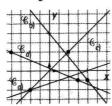
- or f(-3) = 0; donc on obtient $0 \ge f(x)$, c'est-à-dire f(x) négatif ou nul.
- b) Faux. Contre-exemple : la fonction f dont la courbe est donnée ci-dessous :





Fonctions affines

- 1. -3; $-\frac{1}{10}$; 0; $\frac{1}{3}$; $-\frac{3}{2}$; 3.
- $2. -2:0:3:-5:-\frac{9}{16}:0.$
- 3. 2; $-\frac{9}{7}$; $-\frac{7}{3}$; 6; $-\frac{1}{3}$; 0.
- 4. $-\frac{10}{9}$; 0; $-\frac{3}{8}$; $-\frac{3}{7}$; $\frac{1}{2}$; 0.
- 5. 1° $\frac{3}{2}$;0; -6; $\frac{2}{3}$; - $\frac{4}{3}$; - $\frac{1}{25}$.
- 2° $\frac{1}{2}$; 0; 8; $\frac{2}{9}$; $-\frac{1}{2}$; -2.
- 6. $\frac{\sqrt{3}}{2}$; -2; $\frac{\sqrt{2}}{3}$; 0; - π ; - $\frac{\sqrt{3}}{2}$.
- **26.** a) $f(x) = \frac{x-4}{3}$. \mathcal{C}_f passe par A(4; 0).
- Son coefficient est $\frac{1}{3}$, positif; donc f est croissante.



37. $a = \frac{f(6) - f(-2)}{6 - (-2)} = \frac{5 - 1}{6 + 2} = \frac{4}{8} = \frac{1}{2}$

la page de calcul

- 1. $A(x) = -3x^2 11x + 10$;
- $B(x) = -4x^2 x + 3$; $C(x) = -5x^2 8x + 3$.
- 2. $A(x) = x^2 4x$; $B(x) = x^2 16x 11$;
- $C(x) = 3x^3 + 7x^2 + 25x + 29.$
- 3. $A(x) = -x^2 + \frac{7}{2}x \frac{1}{4}$;
- $B(x) = \frac{1}{6}x^2 + \frac{2}{3}x \frac{1}{3} \; ; \; C(x) = -\frac{17}{9}x^2 + \frac{1}{4} \; .$
- 4. et 5. Développer les formes données, pour retrouver la même.
- 6. 1° b); 2° c); 3° c); 4° a).
- 7. Impossible (somme de nombres positifs);
- $(x-1)^2$; $(x+\sqrt{3})(x-\sqrt{3})$; x(3x-1);
- $(2 + \sqrt{3} x)(2 \sqrt{3} x)$;
- $(2x + 1)^2$; x(9x 4); impossible.
- 8 1° a) (2x + 1)(2x 1)(2x 3);
- b) 2x(x+1)(x-1); c) x(5x-4)(x+2);
- d) -5x(2x-1)(4x-1).
- 2° a) (7x + 3) (-3x 5); b) (3x + 8) (-3x 6);
- c) (3x 14)(-x + 4); d) (5x 6)(3x 6).
- 9. a) (3x-7)(x-6);
- b) $(1 + \sqrt{3} 3x) (1 \sqrt{3} 3x)$;
- c) (2x-3)(-5x) = -5x(2x-3);
- d) (4x-1)(4x-2).

- 10. a) (7x 6)(-x 12); b) (2 + x)(2 x);
- c) (5x + 1) (-x 1); d) x(x 4);
- e) $-\frac{3}{2}(x-\frac{3}{2})$; f) $(\frac{x}{3}+\frac{1}{2})(\frac{x}{3}-\frac{1}{2})$;
- g) (x + 4) (-6x 1); h) $(x\sqrt{2} + 3) (x\sqrt{2} 3)$.
- 11. a) On cherche le nombre qui multiplié par -1 donne +4: (x-1) (x-4);
- b) (x-3)(2x+1); c) (x-1)(-x-2);
- d) (x-2)(-3x+1).
- 12. (x-1)(x+5). Bien faire la vérification!